Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 216
1.
Biol Res ; 57(1): 25, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720397

PURPOSE: Prostate cancer (PCa) is a major urological disease that is associated with significant morbidity and mortality in men. LLGL2 is the mammalian homolog of Lgl. It acts as a tumor suppressor in breast and hepatic cancer. However, the role of LLGL2 and the underlying mechanisms in PCa have not yet been elucidated. Here, we investigate the role of LLGL2 in the regulation of epithelial-mesenchymal transition (EMT) in PCa through autophagy in vitro and in vivo. METHODS: PC3 cells were transfected with siLLGL2 or plasmid LLGL2 and autophagy was examined. Invasion, migration, and wound healing were assessed in PC3 cells under autophagy regulation. Tumor growth was evaluated using a shLLGL2 xenograft mouse model. RESULTS: In patients with PCa, LLGL2 levels were higher with defective autophagy and increased EMT. Our results showed that the knockdown of LLGL2 induced autophagy flux by upregulating Vps34 and ATG14L. LLGL2 knockdown inhibits EMT by upregulating E-cadherin and downregulating fibronectin and α-SMA. The pharmacological activation of autophagy by rapamycin suppressed EMT, and these effects were reversed by 3-methyladenine treatment. Interestingly, in a shLLGL2 xenograft mouse model, tumor size and EMT were decreased, which were improved by autophagy induction and worsened by autophagy inhibition. CONCLUSION: Defective expression of LLGL2 leads to attenuation of EMT due to the upregulation of autophagy flux in PCa. Our results suggest that LLGL2 is a novel target for alleviating PCa via the regulation of autophagy.


Autophagy , Epithelial-Mesenchymal Transition , Prostatic Neoplasms , Animals , Humans , Male , Mice , Autophagy/physiology , Autophagy/genetics , Cell Line, Tumor , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Silencing , Mice, Nude , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
2.
Brain Commun ; 6(3): fcae129, 2024.
Article En | MEDLINE | ID: mdl-38707712

Stroke is the leading cause of long-term disability worldwide. Incurred brain damage can disrupt cognition, often with persisting deficits in language and executive capacities. Yet, despite their clinical relevance, the commonalities and differences between language versus executive control impairments remain under-specified. To fill this gap, we tailored a Bayesian hierarchical modelling solution in a largest-of-its-kind cohort (1080 patients with stroke) to deconvolve language and executive control with respect to the stroke topology. Cognitive function was assessed with a rich neuropsychological test battery including global cognitive function (tested with the Mini-Mental State Exam), language (assessed with a picture naming task), executive speech function (tested with verbal fluency tasks), executive control functions (Trail Making Test and Digit Symbol Coding Task), visuospatial functioning (Rey Complex Figure), as well as verbal learning and memory function (Soul Verbal Learning). Bayesian modelling predicted interindividual differences in eight cognitive outcome scores three months after stroke based on specific tissue lesion topologies. A multivariate factor analysis extracted four distinct cognitive factors that distinguish left- and right-hemispheric contributions to ischaemic tissue lesions. These factors were labelled according to the neuropsychological tests that had the strongest factor loadings: One factor delineated language and general cognitive performance and was mainly associated with damage to left-hemispheric brain regions in the frontal and temporal cortex. A factor for executive control summarized mental flexibility, task switching and visual-constructional abilities. This factor was strongly related to right-hemispheric brain damage of posterior regions in the occipital cortex. The interplay of language and executive control was reflected in two distinct factors that were labelled as executive speech functions and verbal memory. Impairments on both factors were mainly linked to left-hemispheric lesions. These findings shed light onto the causal implications of hemispheric specialization for cognition; and make steps towards subgroup-specific treatment protocols after stroke.

3.
Int J Stroke ; : 17474930241252530, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38651756

BACKGROUND: Post-stroke cognitive impairment (PSCI) occurs in up to 50% of stroke survivors. Presence of pre-existing vascular brain injury, in particular the extent of white matter hyperintensities (WMH), is associated with worse cognitive outcome after stroke, but the role of WMH location in this association is unclear. AIM: We determined if WMH in strategic white matter tracts explain cognitive performance after stroke. METHODS: Individual patient data from 9 ischemic stroke cohorts with MRI were harmonized through the Meta VCI Map consortium. The association between WMH volumes in strategic tracts and domain-specific cognitive functioning (attention and executive functioning, information processing speed, language and verbal memory) was assessed using linear mixed models and lasso regression. We used a hypothesis-driven design, primarily addressing four white matter tracts known to be strategic in memory clinic patients: the left and right anterior thalamic radiation, forceps major and left inferior fronto-occipital fasciculus. RESULTS: The total study sample consisted of 1568 patients (39.9% female, mean age: 67.3 years). Total WMH volume was strongly related to cognitive performance on all four cognitive domains. WMH volume in the left anterior thalamic radiation was significantly associated with cognitive performance on attention and executive functioning and information processing speed, and WMH volume in the forceps major with information processing speed. The multivariable lasso regression showed that these associations were independent of age, sex, education, and total infarct volume and had larger coefficients than total WMH volume. CONCLUSIONS: These results show tract-specific relations between WMH volume and cognitive performance after ischemic stroke, independent of total WMH volume. This implies that the concept of strategic lesions in PSCI extends beyond acute infarcts and also involves pre-existing WMH. DATA AVAILABILITY: The Meta VCI Map consortium is dedicated to data sharing, following our guidelines.

4.
Int Neurourol J ; 28(1): 52-58, 2024 Mar.
Article En | MEDLINE | ID: mdl-38569620

PURPOSE: We assessed the effectiveness and safety of using intravesical onabotulinumtoxinA (onabotA; BOTOX) injection with a low dose (75 units) for treating urinary storage symptoms in patients with detrusor overactivity with detrusor underactivity (DODU) compared to using the standard 100 units of onabotA in patients with overactive bladder (OAB). METHODS: This ambidirectional study included 121 female patients who received intravesical onabotA injections at our hospitals. A total of 87 patients with OAB and 34 patients with DODU were reviewed using a 3-day voiding diary, uroflowmetry, and questionnaires including the International Prostate Symptom Score (IPSS), Overactive Bladder Symptom Score, and Patient Perception of Bladder Condition. Patients were evaluated at baseline, within 2 weeks of treatment, and beyond 3 months after treatment. RESULTS: Questionnaire scores of the DODU group demonstrated significant improvement in the short term, with a subsequent decline, but an overall improvement compared to baseline in the long term. Notably, the DODU group exhibited enhanced IPSS voiding scores after the treatment. In the OAB group, most questionnaire scores, excluding the IPSS voiding score, showed significant posttreatment improvement, which was sustained to some extent in the long term. Voiding diary parameters related to storage symptoms were enhanced in both groups. The maximum and mean flow rates decreased in the OAB group but increased in the DODU group, particularly in the short term (P=0.000). The postvoid residual volume increased in both groups after posttreatment, with a mitigated change in the long term. Safety assessments revealed manageable adverse events in both groups with comparable frequencies. CONCLUSION: Low-dose intravesical onabotA for DODU demonstrated a relatively shorter duration of efficacy than OAB. Nonetheless, the treatment improved both storage and voiding symptoms in patients with DODU without significant adverse effects.

5.
J Mol Diagn ; 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38677548

The current noninvasive diagnostic approaches for detecting bladder cancer (BC) often exhibit limited clinical performance, especially for the initial diagnosis. This study aims to evaluate the validity of a streamlined urine-based PENK methylation test called EarlyTect BCD in detecting BC in patients with hematuria scheduled for cystoscopy in Korean and American populations. The test seamlessly integrates two steps, linear target enrichment and quantitative methylation-specific PCR within a single closed tube. The detection limitation of the test was approximately two genome copies of methylated PENK per milliliter of urine. In the retrospective training set (n = 105), an optimal cutoff value was determined to distinguish BC from non-BC, resulting in a sensitivity of 87.3% and a specificity of 95.2%. In the prospective validation set (n = 210, 122 Korean and 88 American patients), the overall sensitivity for detecting all stages of BC was 81.0%, with a specificity of 91.5% and an area under the curve value of 0.889. There was no significant difference between the two groups. The test achieved a sensitivity of 100% in detecting high-grade Ta and higher stages of BC. The negative predictive value of the test was 97.7%, and the positive predictive value was 51.5%. The findings of this study demonstrate that EarlyTect BCD is a highly effective noninvasive diagnostic tool for identifying BC among patients with hematuria.

6.
Sci Rep ; 14(1): 7986, 2024 04 05.
Article En | MEDLINE | ID: mdl-38575660

The coronavirus disease 2019 (COVID-19) pandemic has profoundly impacted vulnerable groups, such as patients with dementia. We examined changes in mortality and loss to follow-up in patients with dementia using data from the Korean National Health Insurance Service research database. Patients with dementia who visited a medical institution with a recorded dementia-related diagnostic code, including Alzheimer's disease, and who received anti-dementia medication between February 2018 and January 2020 were included in this study. We divided patients with dementia receiving anti-dementia medications into two cohorts: those newly diagnosed with dementia between February 2018 and January 2019 (n = 62,631) and those diagnosed between February 2019 and January 2020 (n = 54,494). Then, we conducted a one-year follow-up of their records, tracking the cohort diagnosed between February 2018 and January 2019 from February 2019 to January 2020, as well as the cohort diagnosed between February 2019 and January 2020 from February 2020 to January 2021. There was a significant increase in follow-up loss among patients newly diagnosed with dementia during the COVID-19 outbreak, from 42.04% in 2019 to 45.89% in 2020. Female sex, younger age, fewer comorbidities, diagnosis of dementia at the Department of Neurology or Psychiatry, and higher income were associated with decreased follow-up loss and mortality. This study highlights the importance of paying extra attention to patients with dementia receiving anti-dementia medications, particularly during pandemics, given their increased risk of loss to follow-up.


Alzheimer Disease , COVID-19 , Humans , Female , COVID-19/epidemiology , Pandemics , Follow-Up Studies , Alzheimer Disease/drug therapy , Alzheimer Disease/epidemiology , Comorbidity
7.
Sci Rep ; 14(1): 4215, 2024 02 20.
Article En | MEDLINE | ID: mdl-38378772

Quantification of diffusion restriction lesions in sporadic Creutzfeldt-Jakob disease (sCJD) may provide information of the disease burden. We aim to develop an automatic segmentation model for sCJD and to evaluate the volume of disease extent as a prognostic marker for overall survival. Fifty-six patients (mean age ± SD, 61.2 ± 9.9 years) were included from February 2000 to July 2020. A threshold-based segmentation was used to obtain abnormal signal intensity masks. Segmented volumes were compared with the visual grade. The Dice similarity coefficient was calculated to measure the similarity between the automatic vs. manual segmentation. Cox proportional hazards regression analysis was performed to evaluate the volume of disease extent as a prognostic marker. The automatic segmentation showed good correlation with the visual grading. The cortical lesion volumes significantly increased as the visual grade aggravated (extensive: 112.9 ± 73.2; moderate: 45.4 ± 30.4; minimal involvement: 29.6 ± 18.1 mm3) (P < 0.001). The deep gray matter lesion volumes were significantly higher for positive than for negative involvement of the deep gray matter (5.6 ± 4.6 mm3 vs. 1.0 ± 1.3 mm3, P < 0.001). The mean Dice similarity coefficients were 0.90 and 0.94 for cortical and deep gray matter lesions, respectively. However, the volume of disease extent was not associated with worse overall survival (cortical extent: P = 0.07; deep gray matter extent: P = 0.12).


Creutzfeldt-Jakob Syndrome , Gray Matter , Humans , Gray Matter/diagnostic imaging , Gray Matter/pathology , Creutzfeldt-Jakob Syndrome/pathology , Diffusion Magnetic Resonance Imaging/methods , Algorithms , Magnetic Resonance Imaging/methods
8.
Dement Neurocogn Disord ; 23(1): 54-66, 2024 Jan.
Article En | MEDLINE | ID: mdl-38362056

Background and Purpose: Dementia subtypes, including Alzheimer's dementia (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD), pose diagnostic challenges. This review examines the effectiveness of 18F-Fluorodeoxyglucose Positron Emission Tomography (18F-FDG PET) in differentiating these subtypes for precise treatment and management. Methods: A systematic review following Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines was conducted using databases like PubMed and Embase to identify studies on the diagnostic utility of 18F-FDG PET in dementia. The search included studies up to November 16, 2022, focusing on peer-reviewed journals and applying the gold-standard clinical diagnosis for dementia subtypes. Results: From 12,815 articles, 14 were selected for final analysis. For AD versus FTD, the sensitivity was 0.96 (95% confidence interval [CI], 0.88-0.98) and specificity was 0.84 (95% CI, 0.70-0.92). In the case of AD versus DLB, 18F-FDG PET showed a sensitivity of 0.93 (95% CI 0.88-0.98) and specificity of 0.92 (95% CI, 0.70-0.92). Lastly, when differentiating AD from non-AD dementias, the sensitivity was 0.86 (95% CI, 0.80-0.91) and the specificity was 0.88 (95% CI, 0.80-0.91). The studies mostly used case-control designs with visual and quantitative assessments. Conclusions: 18F-FDG PET exhibits high sensitivity and specificity in differentiating dementia subtypes, particularly AD, FTD, and DLB. This method, while not a standalone diagnostic tool, significantly enhances diagnostic accuracy in uncertain cases, complementing clinical assessments and structural imaging.

9.
Nat Commun ; 15(1): 46, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38167804

Addressing age-related immunological defects through therapeutic interventions is essential for healthy aging, as the immune system plays a crucial role in controlling infections, malignancies, and in supporting tissue homeostasis and repair. In our study, we show that stimulating toll-like receptor 5 (TLR5) via mucosal delivery of a flagellin-containing fusion protein effectively extends the lifespan and enhances the healthspan of mice of both sexes. This enhancement in healthspan is evidenced by diminished hair loss and ocular lens opacity, increased bone mineral density, improved stem cell activity, delayed thymic involution, heightened cognitive capacity, and the prevention of pulmonary lung fibrosis. Additionally, this fusion protein boosts intestinal mucosal integrity by augmenting the surface expression of TLR5 in a certain subset of dendritic cells and increasing interleukin-22 (IL-22) secretion. In this work, we present observations that underscore the benefits of TLR5-dependent stimulation in the mucosal compartment, suggesting a viable strategy for enhancing longevity and healthspan.


Longevity , Toll-Like Receptor 5 , Animals , Mice , Flagellin/metabolism , Intestinal Mucosa/metabolism , Longevity/genetics , Lung/metabolism
10.
Neurology ; 102(1): e207795, 2024 01 09.
Article En | MEDLINE | ID: mdl-38165371

BACKGROUND AND OBJECTIVES: Visible perivascular spaces are an MRI marker of cerebral small vessel disease and might predict future stroke. However, results from existing studies vary. We aimed to clarify this through a large collaborative multicenter analysis. METHODS: We pooled individual patient data from a consortium of prospective cohort studies. Participants had recent ischemic stroke or transient ischemic attack (TIA), underwent baseline MRI, and were followed up for ischemic stroke and symptomatic intracranial hemorrhage (ICH). Perivascular spaces in the basal ganglia (BGPVS) and perivascular spaces in the centrum semiovale (CSOPVS) were rated locally using a validated visual scale. We investigated clinical and radiologic associations cross-sectionally using multinomial logistic regression and prospective associations with ischemic stroke and ICH using Cox regression. RESULTS: We included 7,778 participants (mean age 70.6 years; 42.7% female) from 16 studies, followed up for a median of 1.44 years. Eighty ICH and 424 ischemic strokes occurred. BGPVS were associated with increasing age, hypertension, previous ischemic stroke, previous ICH, lacunes, cerebral microbleeds, and white matter hyperintensities. CSOPVS showed consistently weaker associations. Prospectively, after adjusting for potential confounders including cerebral microbleeds, increasing BGPVS burden was independently associated with future ischemic stroke (versus 0-10 BGPVS, 11-20 BGPVS: HR 1.19, 95% CI 0.93-1.53; 21+ BGPVS: HR 1.50, 95% CI 1.10-2.06; p = 0.040). Higher BGPVS burden was associated with increased ICH risk in univariable analysis, but not in adjusted analyses. CSOPVS were not significantly associated with either outcome. DISCUSSION: In patients with ischemic stroke or TIA, increasing BGPVS burden is associated with more severe cerebral small vessel disease and higher ischemic stroke risk. Neither BGPVS nor CSOPVS were independently associated with future ICH.


Cerebral Small Vessel Diseases , Ischemic Attack, Transient , Ischemic Stroke , Stroke , Humans , Female , Aged , Male , Prognosis , Ischemic Attack, Transient/complications , Ischemic Attack, Transient/diagnostic imaging , Prospective Studies , Intracranial Hemorrhages , Stroke/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Magnetic Resonance Imaging , Cerebral Hemorrhage
12.
Sci Rep ; 13(1): 21328, 2023 12 04.
Article En | MEDLINE | ID: mdl-38044360

Normal pressure hydrocephalus (NPH) patients had altered white matter tract integrities on diffusion tensor imaging (DTI). Previous studies suggested disproportionately enlarged subarachnoid space hydrocephalus (DESH) as a prognostic sign of NPH. We examined DTI indices in NPH subgroups by DESH severity and clinical symptoms. This retrospective case-control study included 33 NPH patients and 33 age-, sex-, and education-matched controls. The NPH grading scales (0-12) were used to rate neurological symptoms. Patients with NPH were categorized into two subgroups, high-DESH and low-DESH groups, by the average value of the DESH scale. DTI indices, including fractional anisotropy, were compared across 14 regions of interest (ROIs). The high-DESH group had increased axial diffusivity in the lateral side of corona radiata (1.43 ± 0.25 vs. 1.72 ± 0.25, p = 0.04), and showed decreased fractional anisotropy and increased mean, and radial diffusivity in the anterior and lateral sides of corona radiata and the periventricular white matter surrounding the anterior horn of lateral ventricle. In patients with a high NPH grading scale, fractional anisotropy in the white matter surrounding the anterior horn of the lateral ventricle was significantly reduced (0.36 ± 0.08 vs. 0.26 ± 0.06, p = 0.03). These data show that DESH may be a biomarker for DTI-detected microstructural alterations and clinical symptom severity.


Hydrocephalus, Normal Pressure , Hydrocephalus , White Matter , Humans , Hydrocephalus, Normal Pressure/diagnostic imaging , Diffusion Tensor Imaging/methods , White Matter/diagnostic imaging , Case-Control Studies , Retrospective Studies , Anisotropy , Hydrocephalus/diagnostic imaging
13.
Antioxidants (Basel) ; 12(12)2023 Nov 22.
Article En | MEDLINE | ID: mdl-38136148

Filamentous fungi produce several beneficial secondary metabolites, including bioactive compounds, food additives, and biofuels. Trichoderma, which is a teleomorphic Hypocrea that falls under the taxonomic groups Ascomycota and Dikarya, is an extensively studied fungal genus. In an ongoing study that seeks to discover bioactive natural products, we investigated potential bioactive metabolites from the methanolic extract of cultured Trichoderma gamsii. Using liquid chromatography-mass spectrometry (LC-MS), one major compound was isolated and structurally identified as 6-pentyl-α-pyrone (6PP) based on nuclear magnetic resonance data and LC-MS analysis. To determine its antioxidant and anti-inflammatory activity, as well as the underlying mechanisms, we treated lipopolysaccharide (LPS)-stimulated Raw264.7 mouse macrophages with 6PP. We found that 6PP suppresses LPS-induced increase in the levels of nitric oxide, a mediator of oxidative stress and inflammation, and restores LPS-mediated depletion of total glutathione by stabilizing nuclear factor erythroid 2-related factor 2 (Nrf2), an antioxidative factor, and elevating heme oxygenase-1 levels. Furthermore, 6PP inhibited LPS-induced production of proinflammatory cytokines, which are, at least in part, regulated by heme oxygenase-1 (HO-1). 6PP suppressed proinflammatory responses by inhibiting the nuclear localization of nuclear factor kappa B (NF-κB), as well as by dephosphorylating the mitogen-activated protein kinases (MAPKs). These results indicate that 6PP can protect macrophages against oxidative stress and LPS-induced excessive inflammatory responses by activating the Nrf2/HO-1 pathway while inhibiting the proinflammatory, NF-κB, and MAPK pathways.

14.
Nutrients ; 15(21)2023 Nov 04.
Article En | MEDLINE | ID: mdl-37960323

BACKGROUND: We aimed to investigate the association between the ApoB/ApoA-I ratio and post-stroke cognitive impairment (PSCI) in patients with acute stroke of large artery atherosclerosis etiology. METHODS: Prospective stroke registry data were used to consecutively enroll patients with acute ischemic stroke due to large artery atherosclerosis. Cognitive function assessments were conducted 3 to 6 months after stroke. PSCI was defined as a z-score of less than -2 standard deviations from age, sex, and education-adjusted means in at least one cognitive domain. The ApoB/ApoA-I ratio was calculated, and patients were categorized into five groups according to quintiles of the ratio. Logistic regression analyses were performed to assess the association between quintiles of the ApoB/ApoA-I ratio and PSCI. RESULTS: A total of 263 patients were included, with a mean age of 65.9 ± 11.6 years. The median NIHSS score and ApoB/ApoA-I ratio upon admission were 2 (IQR, 1-5) and 0.81 (IQR, 0.76-0.88), respectively. PSCI was observed in 91 (34.6%) patients. The highest quintile (Q5) of the ApoB/ApoA-I ratio was a significant predictor of PSCI compared to the lowest quintile (Q1) (adjusted OR, 3.16; 95% CI, 1.19-8.41; p-value = 0.021) after adjusting for relevant confounders. Patients in the Q5 group exhibited significantly worse performance in the frontal domain. CONCLUSIONS: The ApoB/ApoA-I ratio in the acute stage of stroke independently predicted the development of PSCI at 3-6 months after stroke due to large artery atherosclerosis. Further, a high ApoB/ApoA-I ratio was specifically associated with frontal domain dysfunction.


Atherosclerosis , Cognitive Dysfunction , Ischemic Stroke , Stroke , Humans , Middle Aged , Aged , Ischemic Stroke/complications , Apolipoprotein A-I , Apolipoproteins B , Stroke/etiology , Atherosclerosis/complications , Arteries
15.
J Am Heart Assoc ; 12(23): e030515, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-38014679

BACKGROUND: This study explored the risk factors, neuroimaging features, and prognostic implications of nonhypertensive white matter hyperintensity (WMH) in patients with acute ischemic stroke and transient ischemic attack. METHODS AND RESULTS: We included 2283 patients with hypertension and 1003 without from a pool of 10 602. Associations of moderate-to-severe WMH with known risk factors, functional outcome, and a composite of recurrent stroke, myocardial infarction, and all-cause mortality were evaluated. A subset of 351 patients without hypertension and age- and sex-matched pairs with hypertension and moderate-to-severe WMH was created for a detailed topographic examination of WMH, lacunes, and microbleeds. Approximately 35% of patients without hypertension and 65% of patients with hypertensive stroke exhibited moderate-to-severe WMH. WMH was associated with age, female sex, and previous stroke, irrespective of hypertension. In patients without hypertension, WMH was associated with initial systolic blood pressure and was more common in the anterior temporal region. In patients with hypertension, WMH was associated with small vessel occlusion as a stroke mechanism and was more frequent in the periventricular region near the posterior horn of the lateral ventricle. The higher prevalence of occipital microbleeds in patients without hypertension and deep subcortical lacunes in patients with hypertension were also observed. Associations of moderate-to-severe WMH with 3-month functional outcome and 1-year cumulative incidence of the composite outcome were significant (both P<0.01), although the latter lost significance after adjustments. The associations between WMH and outcomes were consistent across hypertensive status. CONCLUSIONS: One-third of patients without hypertension with stroke have moderate-to-severe WMH. The pathogenesis of WMH may differ between patients without and with hypertension, but its impact on outcome appears similar.


Hypertension , Ischemic Stroke , Stroke , White Matter , Humans , Female , White Matter/pathology , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/epidemiology , Ischemic Stroke/complications , Stroke/diagnostic imaging , Stroke/epidemiology , Stroke/complications , Prognosis , Hypertension/complications , Hypertension/epidemiology , Risk Factors , Neuroimaging , Cerebral Hemorrhage/complications , Magnetic Resonance Imaging
16.
Stroke ; 54(12): 3021-3029, 2023 12.
Article En | MEDLINE | ID: mdl-37901947

BACKGROUND: White matter hyperintensities (WMH) are associated with cognitive dysfunction after ischemic stroke. Yet, uncertainty remains about affected domains, the role of other preexisting brain injury, and infarct types in the relation between WMH burden and poststroke cognition. We aimed to disentangle these factors in a large sample of patients with ischemic stroke from different cohorts. METHODS: We pooled and harmonized individual patient data (n=1568) from 9 cohorts, through the Meta VCI Map consortium (www.metavcimap.org). Included cohorts comprised patients with available magnetic resonance imaging and multidomain cognitive assessment <15 months poststroke. In this individual patient data meta-analysis, linear mixed models were used to determine the association between WMH volume and domain-specific cognitive functioning (Z scores; attention and executive functioning, processing speed, language and verbal memory) for the total sample and stratified by infarct type. Preexisting brain injury was accounted for in the multivariable models and all analyses were corrected for the study site as a random effect. RESULTS: In the total sample (67 years [SD, 11.5], 40% female), we found a dose-dependent inverse relationship between WMH volume and poststroke cognitive functioning across all 4 cognitive domains (coefficients ranging from -0.09 [SE, 0.04, P=0.01] for verbal memory to -0.19 [SE, 0.03, P<0.001] for attention and executive functioning). This relation was independent of acute infarct volume and the presence of lacunes and old infarcts. In stratified analyses, the relation between WMH volume and domain-specific functioning was also largely independent of infarct type. CONCLUSIONS: In patients with ischemic stroke, increasing WMH volume is independently associated with worse cognitive functioning across all major domains, regardless of old ischemic lesions and infarct type.


Brain Injuries , Ischemic Stroke , Stroke , White Matter , Humans , Female , Male , Brain/diagnostic imaging , Brain/pathology , Ischemic Stroke/complications , White Matter/diagnostic imaging , White Matter/pathology , Cognition , Cohort Studies , Magnetic Resonance Imaging , Brain Injuries/pathology , Infarction/pathology , Stroke/complications , Stroke/diagnostic imaging , Stroke/pathology , Neuropsychological Tests
17.
Antioxidants (Basel) ; 12(10)2023 Sep 22.
Article En | MEDLINE | ID: mdl-37891872

Ehretia tinifolia (E. tinifolia) L., an evergreen tree with substantial biological activity, including antioxidant and anti-inflammatory effects, has been used in many herbal and traditional medicines. To elucidate its antioxidant and anti-inflammatory activity and the underlying mechanisms, we applied a methanol extract of E. tinifolia (ETME) to lipopolysaccharide (LPS)-stimulated mouse immortalized Kupffer cells. ETME suppressed the LPS-induced increase in nitric oxide, a mediator for oxidative stress and inflammation, and restored LPS-mediated depletion of total glutathione level by stabilizing antioxidative nuclear factor erythroid 2-related factor 2 (Nrf2) and the subsequent increase in heme oxygenase-1 levels. Furthermore, ETME inhibited the LPS-induced production of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. The inhibitory effects of ETME on pro-inflammatory responses were regulated by ETME-mediated dephosphorylation of mitogen-activated protein kinases (MAPKs: p38, p44/p42, and stress-associated protein kinase/c-Jun N-terminal kinase) and inhibition of nuclear localization of nuclear factor kappa B (NF-κB). These results suggest that ETME is a possible candidate for protecting Kupffer cells from LPS-mediated oxidative stress and excessive inflammatory responses by activating antioxidant Nrf2/HO-1 and inhibiting pro-inflammatory NF-κB and MAPKs, respectively.

18.
Front Aging Neurosci ; 15: 1238274, 2023.
Article En | MEDLINE | ID: mdl-37842126

Objectives: More than half of patients with acute ischemic stroke develop post-stroke cognitive impairment (PSCI), a significant barrier to future neurological recovery. Thus, predicting cognitive trajectories post-AIS is crucial. Our primary objective is to determine whether brain network properties from electroencephalography (EEG) can predict post-stroke cognitive function using machine learning approach. Methods: We enrolled consecutive stroke patients who underwent both EEG during the acute stroke phase and cognitive assessments 3 months post-stroke. We preprocessed acute stroke EEG data to eliminate low-quality epochs, then performed independent component analysis and quantified network characteristics using iSyncBrain®. Cognitive function was evaluated using the Montreal cognitive assessment (MoCA). We initially categorized participants based on the lateralization of their lesions and then developed machine learning models to predict cognitive status in the left and right hemisphere lesion groups. Results: Eighty-seven patients were included, and the accuracy of lesion laterality prediction using EEG attributes was 97.0%. In the left hemispheric lesion group, the network attributes of the theta band were significantly correlated with MoCA scores, and higher global efficiency, clustering coefficient, and lower characteristic path length were associated with higher MoCA scores. Most features related to cognitive scores were selected from the frontal lobe. The predictive powers (R-squared) were 0.76 and 0.65 for the left and right stroke groups, respectively. Conclusion: Estimating EEG-based network properties in the acute phase of ischemic stroke through a machine learning model has a potential to predict cognitive outcomes after ischemic stroke.

19.
Front Neurol ; 14: 1221892, 2023.
Article En | MEDLINE | ID: mdl-37719763

Background and purpose: To develop and validate a deep learning-based automatic segmentation model for assessing intracranial volume (ICV) and to compare the accuracy determined by NeuroQuant (NQ), FreeSurfer (FS), and SynthSeg. Materials and methods: This retrospective study included 60 subjects [30 Alzheimer's disease (AD), 21 mild cognitive impairment (MCI), 9 cognitively normal (CN)] from a single tertiary hospital for the training and validation group (50:10). The test group included 40 subjects (20 AD, 10 MCI, 10 CN) from the ADNI dataset. We propose a robust ICV segmentation model based on the foundational 2D UNet architecture trained with four types of input images (both single and multimodality using scaled or unscaled T1-weighted and T2-FLAIR MR images). To compare with our model, NQ, FS, and SynthSeg were also utilized in the test group. We evaluated the model performance by measuring the Dice similarity coefficient (DSC) and average volume difference. Results: The single-modality model trained with scaled T1-weighted images showed excellent performance with a DSC of 0.989 ± 0.002 and an average volume difference of 0.46% ± 0.38%. Our multimodality model trained with both unscaled T1-weighted and T2-FLAIR images showed similar performance with a DSC of 0.988 ± 0.002 and an average volume difference of 0.47% ± 0.35%. The overall average volume difference with our model showed relatively higher accuracy than NQ (2.15% ± 1.72%), FS (3.69% ± 2.93%), and SynthSeg (1.88% ± 1.18%). Furthermore, our model outperformed the three others in each subgroup of patients with AD, MCI, and CN subjects. Conclusion: Our deep learning-based automatic ICV segmentation model showed excellent performance for the automatic evaluation of ICV.

...